
thermo scientific

Direct Detection of Active Monomeric Prolactin

B·R·A·H·M·S Prolactin KRYPTOR – Revealing Macroprolactin Interference

Physiological role of Prolactin

The pituitary hormone prolactin (PRL) plays an important role in lactation following pregnancy and in several other biological processes such as immunoregulation or angiogenesis.¹ Prolactin can be found in 3 different forms in a patient's serum²: the monomeric prolactin (mPRL), a dimeric form usually referred to as "big prolactin" (bPRL), and a large complexed form termed macroprolactin or "big big prolactin" (bbPRL). Of these 3 forms only mPRL is physiologically active (figure 1).

Revealing Macroprolactin interference

A hyperprolactinemia is defined as a high level of active monomeric prolactin (mPRL). There are several pathological reasons for hyperprolactinemia such as pitiutary adenomas, hypothalamic and pitiutary diseases, chest wall diseases, hypothyroidism and hepatorenal disorders.³ An increased level of macroprolactin (macroprolactinemia) is clinically not relevant.^{4,5} Distinguishing between prolactin and macroprolactin is necessary to avoid misinterpretation of results.

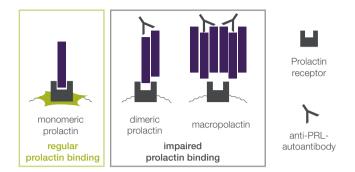


Figure 1 Different isoforms of prolactin and their physiological activity. modified 4

In order to provide reliable results most available methods for prolactin detection require additional investigations.⁶

Thermo Scientific[™] B·R·A·H·M·S[™] Prolactin KRYPTOR[™] shows minimal macroprolactin interference and therefore offers a valuable tool for identification of hyperprolactinemia (figure 2).^{7,8}

Thermo Scientific B·R·A·H·M·S Prolactin KRYPTOR can be used either for direct measurement of monomeric prolactin or as a confirmation for initial determination obtained on another instrument.

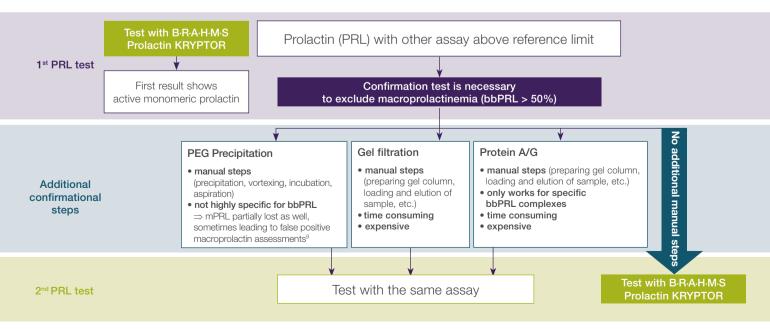
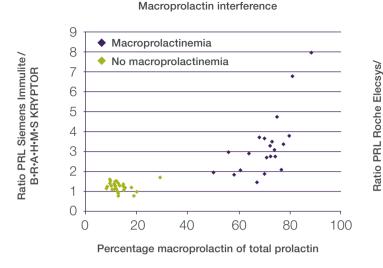
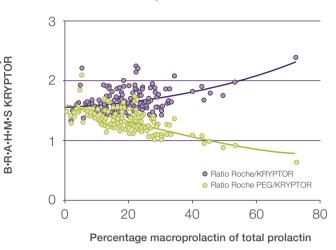
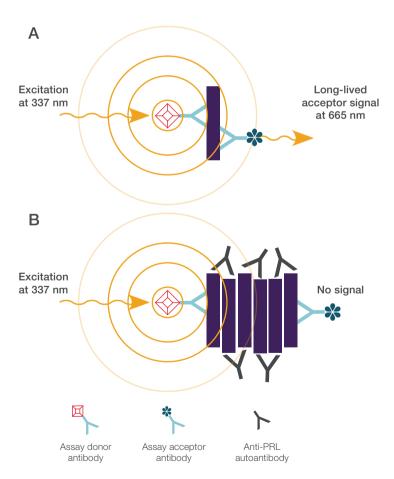



Figure 2 Different options for reliable determinations of active monomeric prolactin. 6.7


Figure 3 The use of B·R·A·H·M·S Prolactin KRYPTOR as the reference method can identify macroprolactin interference on Siemens Immulite platform. In samples with macroprolactinemia, results of the competitor assay are 2-8 fold higher than those measured with B·R·A·H·M·S Prolactin KRYPTOR.^{modified 6}

Macroprolactin and TRACE technology


The B·R·A·H·M·S Prolactin KRYPTOR assay principle is based on an energy transfer between two different fluorescent labels on antibodies which form a sandwich complex with prolactin (figure 5 A). When bound to macroprolactin instead the spatial distance between the assay antibodies prevents the energy transfer and no signal can be measured (figure 5 B).

Thus, the combination of the assay antibody epitopes and TRACE technology results in minimal macroprolactin reactivity.

Macroprolactin interference

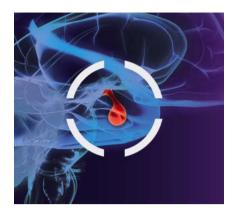


Figure 4 B·R·A·H·M·S Prolactin KRYPTOR as reference method can identify macroprolactin interference on Roche Cobas platform. After PEG precipitation, results on the competitor instrument show better comparability with B·R·A·H·M·S Prolactin KRYPTOR results.^{10, data on file}

Figure 5 B·R·A·H·M·S Prolactin KRYPTOR assay antibodies bound to monomeric prolactin (A) and macroprolactin (B).

thermo scientific

Direct detection of active monomeric Prolactin:

Thermo Scientific B·R·A·H·M·S Prolactin KRYPTOR Article number 824.050

References

- 1. Freeman, M.E., et al., Physiol Rev, 2000. 80(4): p. 1523-631.
- 2. Smith, C.R., Norman, M.R., Ann Clin Biochem, 1990. 27 (Pt 6): p. 542-50.
- 3. Molitch, M.E., Endocrinol Metab Clin North Am. 1992 Dec;21(4):877-901.
- 4. Serri, O., et al., CMAJ, 2003. 169(6): p. 575-81.
- 5. Whittaker, P.G., et al., J Clin Endocrinol Metab, 1981. 53(4): p. 863-6.
- 6. Shimatsu, A. and N. Hattori, Clin Dev Immunol, 2012. 2012: p. 167132.
- 7. Rojat, P., et al., Immuno-analyse et biologie spécialisée, 2007. 22: p. 115-119.
- 8. Sapin, R., et al., Immuno-analyse et biologie spécialisée, 2005. 20: p. 191-195.
- 9. Ram, S., et al., Ann Clin Biochem, 2008. 45:256-259.
- 10. Fahie-Wilson, M., et al., Clin Lab, 2007. 53(7-8): p. 485-92.

Clinical Diagnostics

Thermo Fisher Scientific B·R·A·H·M·S GmbH Neuendorfstr. 25 16761 Hennigsdorf Deutschland +49 (0)3302 883 0 +49 (0)3302 883 100 Fax info.brahms@thermofisher.com www.thermoscientific.com/brahms

Find out more at thermoscientific.com/brahms

Product is CE marked but not 510(k)-cleared and not available for sale in the U.S.

Availability of product in each country depends on local regulatory marketing authorization status. ©2018 Thermo Fisher Scientific Inc. All rights reserved.

All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. KRYPTOR is a trademark of CIS bio international, licensed for use by B·R·A·H·M·S, a part of Thermo Fisher Scientific.

